
THE FUZZY SYSTEM IS A KNOWL-
edge-based system consisting of linguis-
tic if-then rules. The rules can be con-
structed using either an expert knowl-
edge of the system that we want to
model or system data acquired through
experimentation. One of the very attrac-
tive aspects of using fuzzy systems is
the realization of nonlinear mappings.
When one wishes to approximate a
nonlinear area and wants to combine a
highly transparent representation with a
linguistic interpretation in the form of
rules, fuzzy systems should be the
choice because, in such cases, they are
superior over the other nonlinear
approximation techniques. The fuzzy-
system family classifies mainly upon the

structure of the  antecedent (if) and
consequent (then) part of the rules, and
it can be roughly divided into

• linguistic fuzzy models, where
both parts consist of linguistic variables
and linguistic values 

• fuzzy relational models, where the
mapping from the antecedent fuzzy sets
Ai to the consequent fuzzy sets Bi is
represented by a fuzzy relation

• Takagi-Sugeno (TS) models, where
the rule antecedents describe fuzzy
regions in the input space (as with the
linguistic models) and the rule conse-
quents are crisp functions of the model
inputs, i.e., if x is Ai then yi = fi (x).

This article will focus only on the TS-
type models. More on fuzzy modeling

can be found in the paper by Babuška
and Verbrüggen.

Consider now a nonlinear area creat-
ed by the outputs of a family of func-
tions that we use to describe a system
with uncertain parameters. The main
question is how to provide a mathemat-
ical representation of the system on the
basis of the nonlinear area? Fuzzy sys-
tems seem a very sound choice; in fact,
Škrjanc et al. introduced a method
where by fixing the rule antecedents
(membership functions) and establish-
ing the rule consequents such that
when the parameters of the consequent
part vary in a certain interval, one is
able to define the upper and lower
boundaries of the area. The so-called
interval fuzzy model (INFUMO) is in
this case very appealing for two rea-
sons: first, the optimization of the INFU-
MO parameters is based on linear pro-
gramming and is therefore easy to
implement and not computationally
demanding; second, in providing the
area boundaries not only do we get the
area approximation but also the confi-
dence band in which all possible sys-
tem outputs can be found with the
probability value of one. This is particu-
larly important when one seeks a
robust description of an uncertain sys-
tem that also comprises the effects of
the unknown system’s inputs in its
nominal operating mode. Hence, if the
system’s output crosses the boundaries,
it can be concluded that, knowing that
the uncertainties are already covered by
the boundaries, a fault has occurred in
the system.

In this study, we are dealing with a
system whose parameters vary in a cer-
tain tolerance band. The band is fixed
yet unknown to the designer. The prob-
lem we are investigating is how to
design a simple and efficient fault-
detection system or how to make a
decision system that will differentiate
between an effect of the system uncer-
tainty and a serious fault in the system’s
operation using only the process input
and output data. The issue of how to
design a robust fault-detection system
has been extensively studied over the
past two decades. The majority of
papers focus on the construction of the
so-called residual generator, a compara-
tor of the process and the process-
model output that creates a residual sig-
nal. Generally, the signal should be
below a preassigned threshold in a
nonfault process operation and above
the threshold otherwise. The threshold
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is usually connected to the influence of
disturbances and other unknown
process inputs. Therefore, a great num-
ber of papers have been dedicated to
the challenge of constructing a robust
residual generator that will be insensi-
tive to the influences of disturbances
and model uncertainties. Some exciting
results have been achieved using vari-
ous artificial-intelligence techniques
such as nonlinear adaptive observers,
fuzzy thresholds and fuzzy models, and
neural-network-based models. For more
information, a dedicated reader is
referred to survey papers by by Frank
and Ding, Frank and  Köppen-Seliger or
more specialized papers (Patton and
Chen; Zhang et al.).

However, all of these methods have
something in common: that the transfer
functions from faults and unknown
inputs to the output must be known to
draw a distinction between a fault and
the influence of unknown inputs. Since
we are dealing with a class of interval-
type uncertain systems where the influ-
ence of the unknown inputs cannot be
modeled and only the input-output data
are available, the methods in question
are not suitable. The idea we propose is
to transform the data, corresponding to
the nominal system operation including
disturbances, into a nonlinear input-out-
put area, approximate it by the means
of the INFUMO and use the INFUMO
output as an online residual generator.
Figure 1 presents this concept.

By calculating the normalized dis-
tance of the transformed system’s out-
put to the boundaries provided by the
INFUMO, we get a simple and effective
fault-detection (FD) system, which is
robust to the effects of the unknown
inputs. Strong points of the proposed
procedure are also intuitiveness, sim-
plicity of design, and the possibility of
using sets of piece-wise constant signals
of arbitrary amplitude time courses in
obtaining the input-output data for
identification of the INFUMO.

The effectiveness of our proposed
method was tested on a small-scale
industrial motor-generator plant. By
using the method, a simple solution for
real-time detection of load change in
the plant was developed. Optimization
convergence problems that could have
arisen either from too many parameters
or from a vast amount of data were
solved by implementing a simple data-
reduction method. Low-pass filtering
was used for the process-data
transformation.

Derivation of the INFUMO
The derivation of the INFUMO can

be roughly divided into the following
stages: applying a fuzzy model in the
TS form, interval identification using
l∞-norm, and obtaining the INFUMO
parameters using linear programming. A
short description of all the stages will
be given next. A more detailed insight
can be found in Škrjanc et al.

A static fuzzy TS-type model in
affine form can be given as a set of
rules

Rj :ifxp is Aj,

theny = θT
j x, j = 1, . . . , m. (1)

The variable xp denotes the input or
variable in premise, and variable y is
the output of the model. The
antecedent variable is connected with s
fuzzy sets Aj, and each fuzzy set Aj

( j = 1, . . . , m) is associated with a real-
valued function µAj(xp) : R → [0, 1] ,
that produces a membership grade of
the variable xp with respect to the fuzzy
set Aj. The consequent vector is denot-
ed xT = [x, 1]. As the output functions
are in affine form, 1 was added to the
vector x. The system output is a linear
combination of the consequent states,
and θj is a vector of fuzzy parameters.
The system in (1) can be described in
closed form

y = βT (xp)�x, (2)

where �T = [θ1, . . . , θm] denotes a

coefficient matrix for the complete set of
rules, and β T(xp) = [

β1(xp), . . . , βm(xp)
]

is a vector of normalized membership
functions with elements that indicate the
degree of fulfillment of the respective
rule. Functions βj(xp) can be defined as 

βj(xp) = µAj(xp)
∑m

j=1 µAj(xp)

j = 1, . . . , m, (3)

and can be seen as a weighted average
of the rule contributions to the system
output y.

The model parameters are estimated
using the l∞-norm as a criterion for the
measure of the modeling error. We will
assume that our data can be found in a
bounded space and that there exists a
family of functions in the space that
form a nonlinear area we want to
approximate. The idea is to approxi-
mate the area, produced by the func-
tions, by its upper and lower bound-
aries. However, obtaining the exact
boundaries would require an infinite
amount of data. Since in this case, we
are limited to the finite set of measured
output values Y = {y1, y2, . . . , yN } and
the finite set of input data
Z = {z1, z2, . . . , zN }, the upper and the
lower boundary functions will be
approximated by fuzzy functions in the
form given in (2). The existence condi-
tion for the approximation is given by
the Stone-Weierstrass theorem (Ying
and Chen). According to the theorem,

Fig. 1 Fault-detection system using a static INFUMO model
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there exists a fuzzy system f such that

max
zi∈Z

∣
∣ f (zi) − g (zi)

∣
∣ < ε, ∀i, (4)

i.e., a fuzzy function f can approximate
an arbitrary nonlinear function g with any
desired degree of accuracy for any ε.

To estimate the optimal parameters
of the proposed fuzzy function, two
tasks must be accomplished: defining
and arranging the membership func-
tions and calculating the optimal fuzzy
parameters. Finding the optimal
arrangement of membership functions
surpasses the scope of this article.
Hence, let us assume that linear mem-
bership functions are used, and the
apex positions are calculated using one
of the clustering methods, e.g., c-means
clustering (Ying and Chen).

After arranging the membership
functions, the optimal fuzzy parameters
are obtained by minimization of the
maximum modeling error

max
zi∈Z

∣
∣yi − f (zi)

∣
∣

= max
zi∈Z

∣
∣
∣yi − βT (xp)�x (zi)

∣
∣
∣ (5)

over the whole input set Z. This implies
the min-max optimization method, and
l∞-norm is used here as the maximum
difference between the elements of two
vectors. Note that the data are obtained
by sampling different output functions y
with arbitrary values of z. The idea of
robust interval fuzzy modeling can be
seen as finding a lower fuzzy function f
and an upper fuzzy function f that sat-
isfy the following condition:

f (zi) ≤ yi ≤ f (zi), ∀zi ∈ Z. (6)

This also means that we get a band
of data in which all yi can be found
with a value probability of one. The
main requirement when defining the
band is that it is as narrow as possible
within the proposed constraints.

The upper and the lower fuzzy func-
tions, respectively, can be found by
solving the following optimization
problems for ∀i

min
�

max
zi∈Z

∣
∣
∣yi − β T(xpi)�x(zi)

∣
∣
∣ ,

if yi − β T(xpi)�x(zi) ≥ 0,

min
�

max
zi∈Z

∣
∣
∣yi − β T(xpi)�x(zi)

∣
∣
∣ ,

if yi − β T(xpi)�x(zi) ≤ 0.

(7)

The solutions to both problems can
be found by linear programming because
both problems can be viewed as solving
the min-max optimization problem, as
described in detail in the Škrjanc et al.
paper. This brings simplicity to the real-
ization of the optimizing process.
However, large data sets and a large
number of parameters will still pose a
threat to optimization convergence. In
the first case, we approach the problem
with data-reduction methods. In the latter
case, we have to find solutions to reduce
the number of parameters.

Residual formation 
and diagnostic scenario

As was shown by Frank and Ding, all
residual generators can be designed by

r (t) = Q (p)(y (t) − ỹ (t)), (8)

with ỹ (t) as an output estimation and
Q (p) is a filter that is free to design and
enhances the residual robustness to the
unknown process inputs. Combining
(8) with (2), the following relation can
be written

r(t) = Q (p)(y(t) − βT �u(t))

= Q (p)y(t) − Q (p)βT �u(t)

= yf (t) − βT �u f (t) (9)

where u(t) = [
u(t) 1

]T
denotes the aug-

mented input vector. The main idea of
the proposed approach is to filter both
the input and the output data, thus

Fig. 3 Schematic representation of the motor-generator plant
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obtaining a confidence band of filtered
input-output data pairs, approximate
the band using the optimization proce-
dure of the INFUMO, and connect the
INFUMO in parallel to the process to
get online estimations of the boundary
outputs. For fault detection, the deci-
sion function should consist of verifying
that each measurement belongs to the
corresponding confidence band. To
provide quantitative information about
the proximity of the measurements to
the closest interval boundaries, dis-
tances were used (Fagarasan et al.). If a
filtered output value yf (t) belongs to an
interval 

[
y

f
(t), yf (t)

]
, and if the mean

interval value is denoted ŷf (t), the pro-
posed distance is defined in the follow-
ing way:

if yf (t) < ŷ f (t), d (yf ) = yf (t) − ŷ f (t)

y
f
(t) − ŷ f (t)

if yf (t) > ŷ f (t), d (yf ) = yf (t) − ŷ f (t)

y f (t) − ŷ f (t)
.

(10)

The distance in (10) is zero when
the measurement is equal to ŷf , and
approaches the value one if the mea-
surement is close to one of the interval
boundaries. A fault is signaled every
time d(yf ) exceeds the value one.
Figure 2 gives a schematic representa-
tion of the proposed fault-detection sys-
tem. The filter Q(p) is represented by a
block denoted LPF, and the distance is
calculated in the DIST block.

Application of the INFUMO 
in the fault detection of a
motor-generator plant

In this section, the application of the
INFUMO in the robust identification
and FD of a process from a class of sys-
tems with uncertain and interval-type
parameters will be presented.

The electromechanical process con-
sists of two dc motors that are mounted
facing each other, as shown in Fig. 3. The
driving shafts are rigidly coupled. The left
motor, marked as G, is the load of the
motor M when operating in generator
mode. Applying a negative voltage to the
generator produces mechanical torque
and results in a shift of the operating con-
ditions. The system output is the voltage
obtained by a tacho generator, which is
mounted to the shaft and converts the
rotary speed to a dc-voltage output sig-
nal. um and ug are the input voltages for
the excitation and the load, respectively.

The signals are connected through an
analog/digital-digital/analog converter to
a PC. The plant setup enables one to con-
trol the shaft speed by changing the
motor’s input voltage.

The process parameters are uncer-
tain. If consecutive open-loop experi-
ments on identical input signals are 
performed, the output responses will
form a set of different trajectories rather
than a single one. One of the reasons
for such behavior is that the system per-
formance depends on the operating
temperature. 

Experiments show that load values
ranging from ug = 0 V to ug = −0.05 V
do not shift the operating conditions
substantially. Hence, the confidence
load interval was defined as [−0.05, 0]
V. With reference to the given INFUMO
identification procedure, a confidence
band of input-output data must be
defined. This band will represent the
most significant operating range of the
plant and include all unexpected devia-
tions due to parameter uncertainties. A
set of 30 experiments was carried out,
i.e., five series of six identification sig-
nals at load voltages from the lowest to
the highest value in 0.01 V steps. The
inputs and associated output signals are

shown in Fig. 4. For the sake of brevity,
only the first, the second, and the last
data sets are presented.

One of the major benefits of the
interval fuzzy model identification,
shown in Fig. 4, is that the input signals
can be arbitrary. Normally, to get a 
confidence band of measurements, it
would be necessary to that experiments
with identical excitation signals are con-
ducted. In industrial practice, however,
a huge amount of various testing data is
usually available when new equipment
is introduced to the production process.

Therefore, we feel that being able to
create an FD system based on data
acquired from a set of experiments on
unequal signals is a benefit that could
come of great use when applying the
proposed method in practice.

According to (8), the input and output
signals are subjected to low-pass filtering
(LFP). The structure of the LPF was cho-
sen as a simple first-order system, repre-
sented by the transfer function in (11)

G f = 1

Tf s + 1
. (11)

Optimal design of the LPF time
constant was not considered in this
study. The cut-off frequency must be

Fig. 4 Process inputs and outputs: the first, the second, and the last experiment
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low enough to allow only slowly
changing signals to propagate through
the filter. As this directly affects the
choice of the time constant, a com-
promise has to be made to ensure that
the system response is not too slow.

Hence, it was chosen as Tf = 30 s.
This way, a compact set of measure-
ments that represents steady-state sys-
tem behavior is obtained. It can be
seen as a load-dependent static input-
output mapping area.

The total number of points gathered
from the identification experiments was
83,700. Performing the optimization on
the given data set would be extremely
time consuming. Therefore, data reduc-
tion is performed by determining the
boundary points. First, the range of
input measurements is divided into
equidistant subspaces. The length of
the step is chosen according to the
subspace with the highest density of
data. In each subspace, the extremity
points are determined. The input-out-
put data is presented in Fig. 5, and the
resulting set of 302 boundary points is
emphasized. These data will be used as
the training data set for the INFUMO
identification. A static INFUMO can be
employed. This brings an additional
reduction of fuzzy parameters to be
optimized. The membership functions
of the INFUMO antecedent variables
were arranged using the Gustafson-
Kessel clustering method (Babuška).
According to the shape of the data
area, it was sufficient to use six fuzzy
subsets for the upper and lower fuzzy
functions.

The parameters were optimized
using the proposed INFUMO optimiza-
tion algorithm in (10). The resulting
boundary functions can be seen in Fig.
5. It is evident that the min-max opti-
mization gave satisfactory results in
approximating the given area. 

To realize a fault-detection system,
INFUMO is connected to the process in
parallel, as shown in Fig. 2. In the test
experiment, we used a similar input sig-
nal as in the identification experiments
and simulated a fault by letting the load
value cross the permitted load band.
The load signal was a combination of
ramps that is outside the load band in
the time period Tf t = 160 − 330 s. It is
presented in the upper diagram of Fig.
6. The middle and lower diagrams
show the input test signal and the cor-
responding process output signal. Note
that in the first 140 s of the experiment,
the input signal was constant, so, the
operating conditions were met.

The results of the test run can be
seen in Fig. 7. In the diagram in Fig.
7(a), the time course of the distance,
calculated by the DIST block in Fig, 2,
is presented. The alarm is called when
the distance crosses the threshold
marked by a dashed line. The shaded
area, denoted “Load boundary cross-
ing,” denotes the period when the load
is not in the permitted interval. The
thick solid line in the bottom of the dia-

Fig. 5 Set of filtered input-output data with boundary points and boundary INFUMO
functions
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gram, denoted “FD alarm,” indicates the
periods when the alarm is called. The
lower diagram shows the comparison
done by the FD system. The filtered
process output is compared to the
boundaries provided by the INFUMO.

It is evident that the proposed FD
system successfully tracks the load
crossing of the permitted band. The
time needed to detect the fault was
21 s. The complete period when the
alarm was called coincides with the
fault period. There is a time delay in
calling the alarm that depends on the
width of the tolerance band and the
way the process responds to the load
change. On one short occasion, the
alarm was not called correspondingly.
This will be discussed with reference to
the Fig. 7(b). It can be seen that during
the second transient after the occur-
rence of the fault, the filtered process
output crossed the boundary area for a
short period of time. It can be conclud-
ed that in this case, fault prediction was
not certain due to the effect of the
plant’s unmodeled dynamics. Since the
filter time constant can be seen as a
tradeoff between robustness to the
unknown process inputs and speed of
the FD system, one way of reducing
this uncertainty would be to find the
optimal structure and parameters of the
applied filter. However, the latter was
not considered in this work.

Conclusions
A novel approach of INFUMO has

been applied in fault detection. The
INFUMO was derived using the l∞ -
norm function approximation. It was
shown that the INFUMO enables the
confining of an arbitrary nonlinear con-
fidence band with an upper and lower
fuzzy function. It is therefore suitable
for the identification of systems with
uncertain parameters, as all the system

responses in the given interval of
uncertainty can be found in the confi-
dence band with a probability value of
one. The benefit in fault detection is to
be able to directly model a family of
interval-type parameter systems, which
guarantees fault-tolerant action.

An application involving the load-
change detection of a motor-generator
pilot plant was presented. To get a con-
fidence band of system responses, a
large number of experiments was car-
ried out, which resulted in a huge set of
data. The problem of data reduction
was dealt with by filtering the input and
output signals using a low-pass filter.
The main benefits were the possibility
of using arbitrary input signals and the
simplicity of the fuzzy static model that
was used. The boundary points of the
gathered-data set were determined by
using a simple algorithm and used as a
training-data set for identification by lin-
ear programming. Connecting the
INFUMO to the process in parallel and
employing an online calculation of the
normalized distance of the filtered
process output from the nearest bound-
ary, the proposed approach was proven
to be successful in detecting unwanted
load changes.

Future work will concentrate on an
optimization of the filter parameters,
investigating the performance resulting
from different choices of filter struc-
tures, and investigating possible exten-
sions to frequency-based methods and
fault-tolerant control.
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Fig. 7 Results of the fault detection system: (a) distance time course and (b) lower-test results as seen from the FD system

Upper Bound

Tolerance Band
Fault Area
Simulation Result
Lower Bound

FD Alarm:

2.5

2

1.5

1

0.5

0

6

5

4

3
0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350

D
is

ta
nc

e

y m
u,

 y
m

l, 
y l

oa
dLoad Boundary Crossing

t [s] t [s]

(a) (b)


